

Evaluation of a *Bacillus* spp. probiotic on beef cattle performance, nutrient digestibility, and enteric methane emissions

<u>A. Maderal¹</u>, I. Fernandez-Marenchino¹, F. Tarnonsky¹, J. Vargas¹, W. Cuervo¹, F. Podversich¹, V. Ramirez-Sepulveda¹, H. Blanchard¹, M. Gomez-Salmoral¹, T. M. Schulmeister¹, O. Queiroz², B. leda Cappellozza² and N. DiLorenzo^{1*}

¹North Florida Research and Education Center, University of Florida, Marianna, FL. ²Chr. Hansen, Hørsholm, Denmark

Probiotics

Adapted from: Dhama et al., 2008

Why Bacillus species?

• *Bacillus* spp. are Gram positive, aerobic or facultative anaerobic endospore forming bacteria

Bacillus spp. mode of action

Previous research

¹ Quiao et al., 2008; ² Sun et al., 2013; ³ Peng et al., 2012; ⁴ Sun et al., 2016; ⁵Kowalski et al., 2008; ⁶ Sun et al., 2010; ⁷ Peng et al., 2012; ⁸Deng et al., (2018); ¹¹ Smith et al., 2021; ¹² Smock et al., 2020; ⁹Calaca et al., 2022; ¹⁰ Dias et al., 2022

Previous research and questions

Objective

Evaluate the effects of a multistrain *Bacillus* probiotic on beef heifers' performance, nutrient digestibility and methane emissions

Hypothesis

Probiotic inclusion would improve performance and feed efficiency by enhancing nutrient digestibility and would decrease enteric methane emissions

Materials and Methods

- 108 Angus-crossbreed replacement heifers on a general randomized block design
- Fed ad-libitum sorghum silage-based diet:

63 % of sorghum silage, 25 % cotton burrs, 10% cottonseed meal, and 2% premix

- Treatments
 - 1- Control (CTL, no additive)

2- Bacillus spp. probiotic (BSL, 310 mg/kg of DM) to achieve a target dose of 2 g animal / day

Probiotic \rightarrow Mixture of *B. licheniformis* and *B. subtilis* at 3.2×10^9 CFU/g

Materials and Methods

Animal performance

- 108 heifers \rightarrow 54 per treatment
- Initial and final BW was obtained by double weight at the beginning and at the end of the performance phase
- Daily individual DM intake → GrowSafe feed bunks

Apparent total tract nutrient digestibility

- Subsample of 80 heifers → 40 per treatment
- Using iNDF as an internal marker
- Feed and fecal samples collected twice a day, during 4-d each
- Analyzed for DM, OM, CP, NDF, ADF and starch digestibility

Enteric methane emissions

- Subsample of 42 heifers →21 per treatment
- Using the sulfur hexafluoride (SF₆) tracer technique
- 5 days of adaptation to the collection canisters
- 5 days of gas collection

Statistical Analysis

- Data were analyzed by MIXED Procedure of SAS
- Generalized randomized block design
- Experimental unit : Heifer
- Fixed effect: Treatment and Pen (treatment)
- Significance $P \le 0.05$
- Initial body weight was tested as a covariate and included when significant

Performance results

Apparent total tract digestibility results

	Treatment			
ltem ¹	Control	Bacillus spp.	SEM ²	<i>P</i> -value ³
Intake, kg/d				
DM	8.64	8.68	0.289	0.940
ОМ	7.23	7.32	0.241	0.809
СР	1.55	1.55	0.053	0.987
NDF	5.53	5.47	0.188	0.819
ADF	3.25	3.03	0.105	0.144
Starch	1.71	1.71	0.069	0.970
Digestibility, % DM				
DM	51.28	51.68	0.462	0.547
ОМ	52.81	53.51	0.489	0.315
СР	42.13	43.51	0.691	0.161
NDF	43.64	42.95	0.476	0.312
ADF	42.56	41.73	0.537	0.278
Starch	82.74	79.46	1.021	0.027

¹DM= dry matter; OM= organic matter; CP = crude protein; NDF = neutral detergent fiber; ADF = acid detergent fiber.

²Standard error of the mean, n = 40 heifers/treatment.

³Observed significance level for Treatment (n = 40 heifers/mean).

Enteric methane emissions results

Summary and conclusions

- No differences were observed on heifers' performance
- Enteric methane emissions were not reduced when the probiotic was included in the diet
- Digestibility of DM, OM, NDF, ADF, and CP did not differ, whereas starch digestibility decreased when feeding the probiotic

The multi-strain *Bacillus* spp. probiotic did not improve performance or efficiency when fed at 310 mg/kg of DM to growing beef heifers

Acknowledgements

- Advisor: Dr. Nicolas DiLorenzo
- Marianna Animal Nutrition Lab members
- NFREC Reproduction and Forage lab
- Beef unit crew

http://dilorenzonutritiolab.com

Thank you!

