Effects of supplementing carinata meal compared with cottonseed meal on performance, carcass characteristics, and sensory attributes in beef steers consuming a finishing diet

Schulmeister, T. M., F. Tarnonsky, F. Podversich, J. J. Vargas, I. Fernandez-Marenchino, A. Maderal, W. Cuervo, C. Gomez, A. Gonella-Diaza, J. C. B. Dubeux, and N. DiLorenzo

Introduction

Brassica carinata

♦ Ethiopia

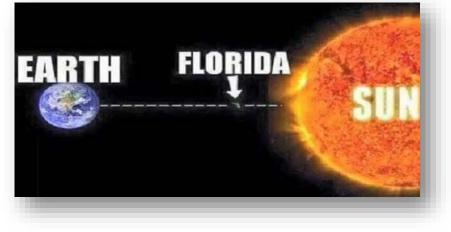
Ethiopian mustard, Carinata


Brassicaceae Mustard family

Selective breeding Erucic acid > 40%

Favorable VLCFA profile Drop-in jet biofuel

Marillia et al., 2013; AAFC, 2015; Seepaul et al., 2016


Introduction

Carinata

Specifically in SE U.S., benefits include:

Cover crop

- Cold/drought tolerant
- Heat/disease resistant
- Rotational crop
- Residual meal is ~ 40% CP

Potential for local, highquality protein supplement for beef cattle

Introduction

Breeding

Carinata: glucosinolates?

Alteration of thyroid metabolism
Inhibition of Cu
Growth retardation
Fertility Impairment
Irritation & edema of GI mucosa

Processing

Glucosinolate content of 90 – 140 µmol/g is considered high in growing crossbred beef steers

Sinigrin

Progoitrin

(PubChem)

New glucosinolate

content:

(Lardy and Kerley, 1994)

Background

♦ Xin and Yu, 2014 → In situ & Three-step

⇒ 78:22 forage to concentrate TMR

Bermudagrass hay + carinata at 0.3% BW

Schulmeister et al., 2019b - Ruminal metabolism

➡ Bahiagrass hay + carinata at 0.3% BW

Schulmeister et al., 2021 — In situ & Three-step

➡ Bahiagrass hay + carinata at 0.3% BW

♦ Tarnonsky et al., 2023 → Heifer performance

→ Silage + 10% carinata inclusion

Current

New carinata meal studies

- As a protein supplement, still novel
- High-quality protein supplements are needed (economy!)
- <u>Reduced glucosinolate content</u>
 - Improved performance?
 - Carcass characteristics?
 - Meat sensory attributes?

No previously published literature!

Objective

Evaluate the effects of supplementing carinata meal compared with cottonseed meal on performance, carcass characteristics, and sensory attributes in beef steers consuming a finishing diet

Hypothesis:

Carinata meal will perform similarly to cottonseed meal in performance, carcass characteristics, and sensory attributes

Materials & Methods

The Experimental design:

- Generalized randomized block design
- Performance conducted over 56 or 105 d

The Animals and housing:

Photo credited to F. Tarnonsky

- 32 Angus crossbred steers (533 ± 40 kg initial BW)
- Randomly assigned to treatment, within pen
- Penned in Feed Efficiency Facility, NFREC, Marianna, FL

🐂 Intake:

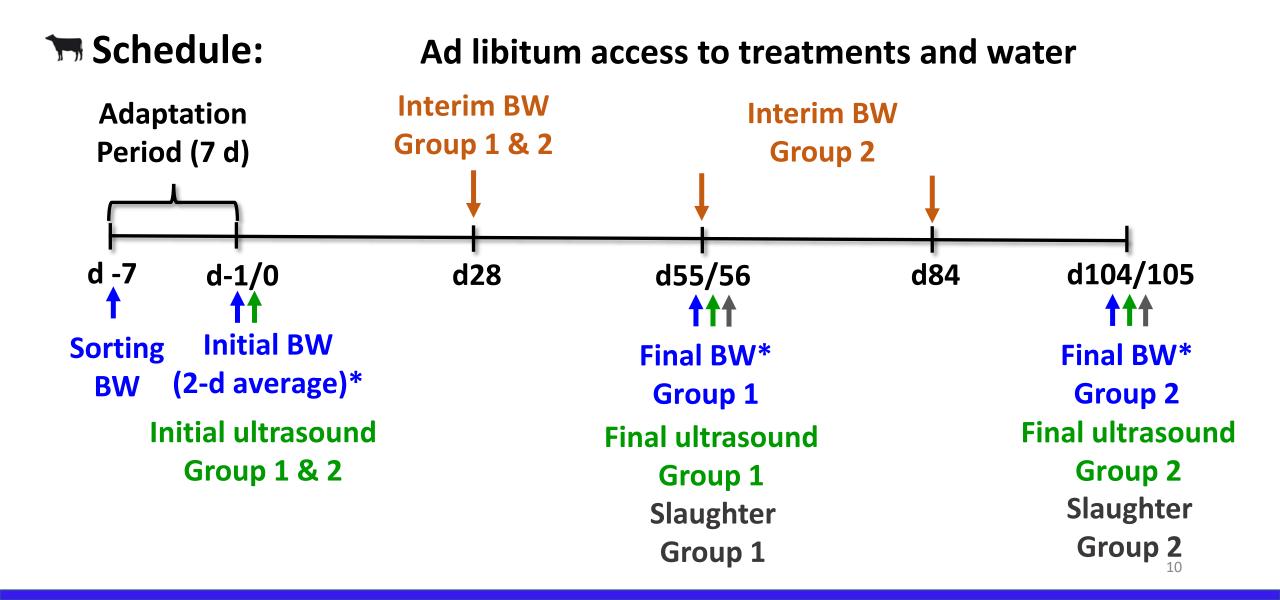
- Ad libitum access to feed and water
- Intake measured using the GrowSafe system

Materials & Methods

Treatments: • BCM = 90% basal diet + 10% carinata meal

Photo credited to F. Tarnonsky

CSM = 90% basal diet + 10% cottonseed meal


Basal diet: 40% cracked corn
35% soyhull pellets
5% gin trash
5% bermudagrass hay
5% vitamin-mineral supplement

*Weighed, mixed, and fed daily (DM basis)

Sampling & Analysis:

- Performance
- Carcass characteristics
- Sensory attributes

Materials & Methods

Nutrient profile

	Treat	ment	
ltem, % DM	BCM	CSM	
DM	90.6	91.6	
СР	13.8	14.8	
EE	2.4	3.1	
aNDF	38.3	39.8	
ADF	27.4	29.4	
TDN	66.5	67.0	

DM = dry matter

- CP = crude protein
- EE = ether extract
- aNDF = neutral detergent fiber*
- ADF = acid detergent fiber
- TDN = total digestible nutrients

Analyzed by Dairy One Forage Testing Laboratory, Ithaca, NY *aNDF measured using α-amylase and sodium sulfite

Statistical analysis

- Data were analyzed as a generalized randomized block design
 - Proc glimmix of SAS
 - binomial proportion
 - ILINK option to calculate treatment proportions
 - Fixed effects: treatment, pen(treatment)
 - Fixed effects: treatment
 - Covariate: initial BW and day of age
 - Random effect: slaughter group
 - Experimental unit: steer (n = 32 steers)
- Differences between treatment means identified by Tukey's least squares means comparison
- Significance declared when $P \le 0.05$

Sensory attributes

Quality grade

Performance

Results Effects of protein inclusion on performance parameters

	Treatment		Treatment			
ltem	BCM	CSM	SEM	P-value		
Initial BW, kg	527	539	7.5	0.11		
Final BW, kg	647	661	6.7	0.08		
ADG, kg	1.49	1.62	0.073	0.24		
DMI, kg/d	11.99	12.21	0.435	0.24		
DMI, % BW	1.85	1.85	0.062	0.99		
G:F, kg/kg	0.12	0.14	0.006	0.15		
RFI, kg DM	0.13	-0.13	0.755	0.82		

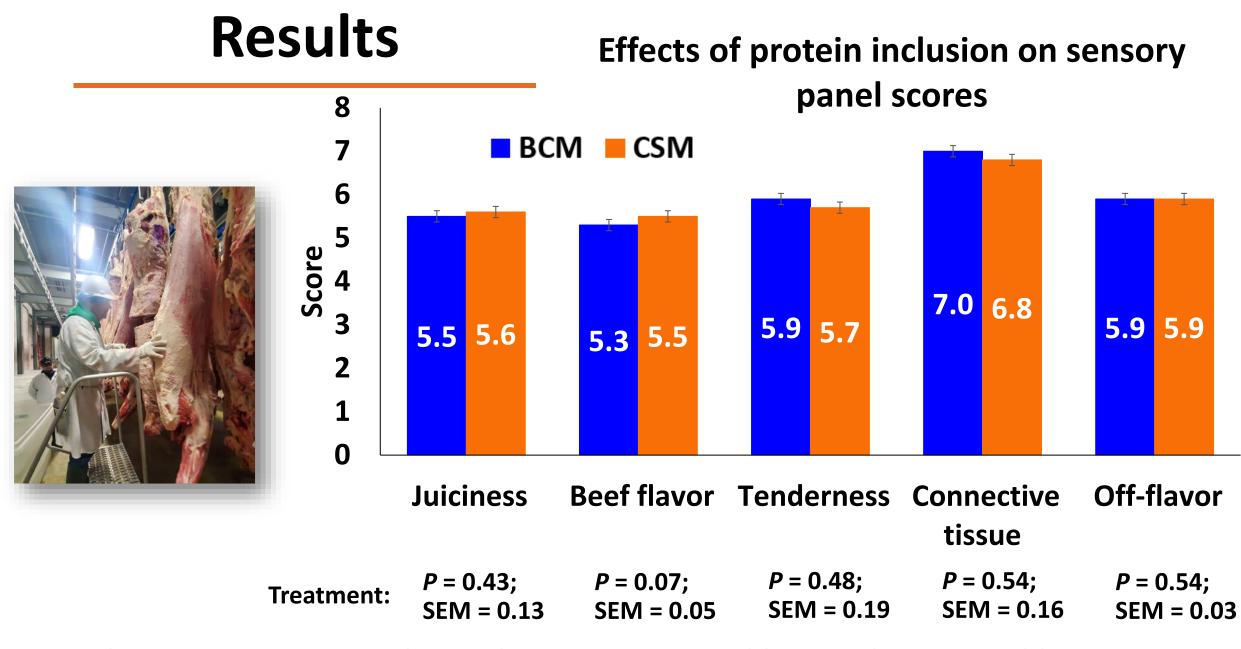
ADG = average daily gain > G:F = gain to feed ratio

DMI = dry matter intake > RFI = residual feed intake

Results

Effects of protein inclusion on carcass characteristics

	Treatment		_	
ltem	BCM	CSM	SEM	P-value
Hot carcass weight, kg	383	391	5.4	0.10
Dressing percentage, %	62.64	62.34	0.428	0.61
LM area, cm ²	93.81	91.59	1.66	0.33
Rib-fat thickness, cm	1.62	1.73	0.092	0.42
Yield grade	3.58	3.67	0.087	0.47
Marbling score	430	436	28.0	0.89


- LM = longissimus muscle
- Marbling score scale: small⁰⁰ = 400, modest⁰⁰ = 500

Results

Effects of protein inclusion on sensory attributes

Treatment						
ltem	BCM	CSM	SEM	P-value		
Slice shear force, kg	19.17	20.56	1.574	0.55		
Crude fat, %	6.80	6.50	0.610	0.76		
Thaw loss, %	20.20	22.09	0.923	0.17		
Cook loss, %	16.60	16.23	0.814	0.76		
Lightness	42.64	43.30	0.621	0.48		
Redness	32.21	32.09	0.520	0.87		
Yellowness	26.27	26.56	0.659	0.76		

Evaluated on 8-point number scale: 8 = most desirable ... 1 = least desirable

16

Results

Effects of protein inclusion on the frequency distribution of USDA quality grade scores

	Treatn	nent		
ltem, %	BCM	CSM	SEM	P-value
Prime	11	8	7.93	0.76
Upper 2/3 Choice	46	54	13.44	0.71
Low Choice	41	28	12.94	0.46
Select	2	10	6.06	0.34

Prime – high quality, abundant marbling Choice – high quality, less marbling than Prime Select – uniform in quality, less marbling than Choice

Summary & Conclusion

🐂 Summary

- 32 finishing Angus crossbred steers
- Basal diet + 10% carinata meal or cottonseed meal

Performance Carcass characteristics Sensory attributes / panel scores USDA quality grade distribution

No statistical differences!

🐂 Conclusion

Carinata meal, a novel high-quality protein source, is comparable to cottonseed meal in delivery of expected beef cattle performance and meat sensory attributes

Acknowledgements

DiLorenzo Nutrition Lab Dubeux Agronomy Lab Gonella Reproduction Lab UF Meat Science Lab

SPARC | Southeast Partnership for Advanced Renewables from Carinata https://sparc-cap.org/

facebook.com/NFRECnutrition

www.dilorenzonutritionlab.com

Thank you!